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Synchronization is a phenomenon which is observed in man-made as well as in
natural objects — electric generators, vacuum-tube oscillators, mechanical
vibrators, pendulum clocks, musical instruments and certaln blologlcal sys-
tems. We give here a general formulation of the problem of synchronizatilon
of dynamic objects and investigaie their pecullarities; we also bnumerate
the principal specific problems and applications. A mathematlcal apparatus
is indlcated which is useful for the study of a basic class of problems of
synchronization - the problems of coordinated functioning of some almost
identical self-oscillating objects, weakly coupled to one another. The ob~
served tendency of such objects, of the most diverse sort, toward synchro~
nous motlon finds 1t mathematical expression in the fact that the governing
system of differential equations with perlodic coefficlents, as a rule, al-
lows of a stable perlodic solution., We give a short review of the work on
the theory of synchronization of dynamic systems and we then enumerate the
problems that have as yet not been solved,

The phenomenon of synchronization may be described as follows: a number
of man-made or natural objects, which in the absence of intercoupling oscil~
late or rotate with various frequencies {angular velocities), begin to move
with identical or multiple frequencies (angular velocities) upon the appli~
cation of at times very weak intercoupling. In the process, & definlte
phase relatlionship 1s established between the respective osclllations and
rotations.

Particular cases of the phenomenon of synchronization have been known for
a long time. Ch. Huygens at the beginning of the second half of the seven-
teenth century established that & pair of pendulum clocks, beating different-
ly, would synchronize themselves when they were attached to a thin beam in-
stead of to the wall [1].

Raylelgh observed synchronizatlion in acoustical and electro-acoustical
systems at the end of the nineteenth century. Observing two organ plpes with
holes distributed in a row, he found that Tor sufficlently small mistuning
the pipes would sound in unison, i.e. there would occur & mutual synchroni-
zation of the two self-oscillating systems. Sometimes the plpes caused com-
plete silencing of one another. An analogous phenomenon was also observed
by Rayleigh for two tuning forks with electro-magnetic excitation. The forks
were coupled together either electrically, mechanically by me&ns of an elaa-
tic wire, or, finally by means of a box resonator {2].

Later, approximately at the beginning of the present century, synchroni-~
zation phenomena& were discovered in electric networks and in certain electro-
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mechanical systems. Untll recent times, the principal technclogical appli-
cations of synchronization (synchronization of electrical generators and
vacuum-tube oscillators) were assoclated with these 1tems.

In 1947 — 1948 the phenomenon of the self-synchronization of mecanically
unbalanced vibrators, fixed to a single vibrating element, was discovered in
the USSR [3 and 4]. It turned out that such vibrators, represented in the
simplest case by unbalanced rotors driven by any sort of motor of asynchro=-
nous type, would, under certain circumstances, operate synchronously, 1n
spite of the possible difference of vibrator parameters and in spite of the
absence of any kinematic or electric coupling between the rotors.

At present time, self-synchronization, and likewlse the related phenome~
non of the sustaining of the rotation of unbalanced rotors by vibrational
means [5 and 6], finds a very wide application in the new construction of
;%brating machinery within the USSR, as well as beyond its borders [7,% and

The effect of vibratiocnal excitation and sustaining of rotation is, in
essence, also used in nuclear technology 1in the design of cyclic acclerators
of charged particles [9]. In the Soviet Union a number of means of forced
electrical synchronization and phasing of rotations of vibrators have been
suggested [10 and ]].

Finally N. Wiener has supposed that the phenomenon of synchronization
lies at the basis of the excltatlon of alpha-rhythm of the brailn, and like-
wlse he gives a far~reaching suggestion of the role of this phenomenon in
the processes of self-organization and self-reproduction of certain bilologi-
cal objects, in particular, in the processes of the evolution of malignant
tumors [12].

The technological problem of synchronization 1s a particular case of &
more general problem, the guaranteeing of the concordant functioning of a
number of objects. In this connection, in certain cases synchronization and
speclfic phasing takes place by virtue of the natural coupling (1n the wide
sense of the word) which 1s already present in the system. Thus, for example,
in the problem of the synchronizatlion of generators of electrical or mechani-
cal oscillations, synchronizatlon 1s frequently realized because of the pro-
pertles of the system itself — the generator and lcad. This type of synchro-
nization 1s usually called self-synchronization. In other cases, the effect
of synchronization and phasing 1is obtained by means of the introduction of
auxiliary synchronizing elements {forced synchronization)}.

The most important examples of problems of synchronization are:

1. To ottain the conditions of synchronization and proper phasing of
mechanical vibrators. This is one of the main problems that arilses in the
design of new types of modern vibrating machinery, as slifters, conveyers,
crushers, millers, etc.

2. To investigate the conditions of stability in the parallel operations
of a number of electrical generators on a common load. This problem is of
particular significance in connection with the integration of complicated
electrical-power systems.

3. To obtailn the conditions of synchronization and definite phasing of
self-oscillations excited in 2 number of vacuum-tube oscillators.

To the same class of problems Delong the followlng: the investigation of
the peculiarities of the motion of rotating elastic shafts with unbalanced
disks, the dynamic analysis of special automatic balances for the compen-
satlion of unbalanced high-speed rotors, the study of the behavior of a num-
ber of unbalanced machines fixed to a common foundation or tc common sup-~
porting structures connected between themselves, the investlgation of the
principles of operation of a number of acoustical instruments, in particular
the peculiarities of the sound of certain musical instruments, and the in-
vestigation of certain biclogical phenomena.

The short review of the history and technological use of synchronization
that has been introduced shows that everywhere where there are oscillatory
processes the problem of synchronization arises sconer or later.

We present below an attempt to examine this problem in a certain general
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forpulation, In other words, we attempt to study the general properties of
the behavior of interconnected various nature objects of the same type.

1, Certain problems in the synochronization of dynamioc objects.

1. Synchronlzation of mechanical
vibrator s . The problem of the synchronization of mechanlcal vibra-
tors 1s one of the maln problems in the theory of vibrating machinery. We
formulate this problemfor the simplest possible case, the self-gynchronization
of unbalanced vibrators fixed to an absolutely rigid platform having one de-
gree of freedom (Fig. 1).

The vibrating ele-
ment of the machine 1
{rigid platform) 1is
connected to an immova-
ble foundation 2 by a
system of planar elastic
supports 3 (springs).
The axes of the springs
are assumed to be in-
extensible and there-~

2 fore the platform can

;;j/j}D translate only in &

P T A direction perpendicular
to these axes. On the

Fig. 1 platform are fixed a

certain number Xk of
unbalanced vibrators 4 in the form of unbalanced rotors, whose axes are per-
pendicular to the plane of oscillation of the platform and which are rota-
tionally driven by some sort of motors of asynchronous type. The state of
the system 1s characterized by the deflection of the platform x from a po-
sition of static equilibrium and by the angle of rotation of the rotors of
the vibrator g, , measured clockwise.

The differential equations of motion of the system have the form [ 3]

Is" = mses[27sin @3 + g cos (gs— )] + Ly (@s) — Re (95)
k
Mz" + kx + i = — 3 myes (cos @) (s=21,0ee, k) (1.1)
$=1

Here r,(w;) 4s the rotational moment of the motor; A, (s, ') is the mo-
ment of the forces resisting rotation of the rotor of the vibrator; m,, ¢,
and 7, are, respectlvely, the mass, eccentricity, and moment of inertia
around the axis of rotation of the rotor ol the gth vibrator; 4 1s the mass
of the system, %k, 1is the coefficlent of viscous resistence, o, is the ri-
gldity of the elastic system, g 1s the acceleration of gravity, y 1s the
angle between the direction of the x-axis and the horizontal,
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The problem conslsts of establishing the conditions under which all the
vibrators will rotate with the same mean absolute angular velocity, in spite
of the absence of any direct connections between thelr rotors, the different
parameters characterizing the vibrators and the forces acting on them. In
other words, what is involved i1s a clarification of the conditions of ex~
istence and stabllity, and, likewlse, the finding of the (even approximate)
solutions of the system {(1.1) of the form

Qs =05 l0F + P (00)] | (s=1,..., &), z = z (0t) (1.2)

Here w 1s the absolute value of the mean rotational velocity of the
vibrators, v, (wt) and x(wt) are perlodic functions of time ¢ with peri-
od 2n/w, and each of the gquantities ¢, 1s elther equal to 1 or —1; the
first case corresponding to a rotation of the 8th vibrator in a positive
direction and the second case to a rotatlion in the negative direction.

A motion of the type (1.2) we shall c¢all synchronous. Sometimes our in-
terest will also be in the investigation of multiple-synchronous motion when
the mean value |g, '} 18 equal to n, w, n, being a positive integer.

The modulus of the angular veloclity of the synchronous rotatlon w 1s not
¥nown beforehand and is subject to determination 1n the process of solving
the problem.

It is not hard to see that if in Equations (1.1) one goes over from the
dependent variables ¢, to new variables y, in accordance with Formulas
{1.2) and to a "nondimensional time" T = wt, then the problem reduces to
the establishment of conditions of existence and stability of periodic {with
period 2n ) solutions of a system of % + 1 nonlinear equatlons of the
second order with periodic coefficients. In its general form this problem
is extremely complicated. However, under specific assumptlons [3] one may
introduce a small parameter into the system and by thls means essentlally
simplify the investigation, the transformed system belng represented in the
form

k
18\]),” + _ﬁ%‘ps'z po, ¥, (‘psv z", 1) {(s=4,..., k
k
[ m,g k_*
2"+ T =— O 3 [eos (T )1 — p g (1.3)
8=

where

g0,
po ¥, (P, 2™, 1) = mye, [ayr sin (v + ¢,) + oF C0s (v + P, — o,x)} +

O
+ of 1L (0,0) — R, (00)] (1.4)
k. = pk,* k, = k*+ kO k*z—(dL“) k°—(——dﬂs)
x x ? 8 8 8 8 d(ps J o ’=Osw, g = d(P,,‘ 0y =0y

u is a small parameter and where, as below, we denote differentiation with
respect to T = wt by means of a prime. In addition, in obtaining Equa~
tions (1.3) we have taken

LS [Us(!) (i + q’g )} = Ls (osm) - kg*csﬁnps

1.
R, lo,0 (1 +¢,)] = R, (0,0) 4+ k0,00, @3
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which corresponds to an assumption on the nearness of the motion of the vi-
brators to uniform rotation, l.e. on the smaliness of ¢,’ as compared to
unity. Usually x,*> 0 and %° > 0.

An imnantant
£ ANPOTLaL

first & equations (the equations of motion of the synchronizable objects)
turn out to be independent of one another, and llkewise of the latter equa-
tion of (1.3}, A second property is the presence of a k-fold root p = 1
in the characteristic equation of the varlational system corresponding to

solutions of the generating system. In thils circumstance it 1s not diffilcult

£ the svstam {1 .2) 18 tha fact
& wut o W Nh v Jj M WD LGV 3 W

+hat ffar o = O the
vilde 10T 3 ne

to verlfy that simple elementary divisors correspond to the multiple roots.
These two propertles are inherent in many problems of the synchronizatlion of
dynamic systems (see below).

The problem that has been
posed may be generalized in an
essentlal way, so for example
the vibrating machine (Fig. 25
may be not one but a number
of rigid bodies B, connected
together by an immovable foun-
dation 1, by certain geometrie
couplings 2, and likewise by
elastlc 3 and damping 4 elements.
Among the vibrators there may
be not only the simple unbalanced
vibrators 5 described above,
but alsc “"planetary vibrators”
6, and the axes of the vibrators
may be arbltrarily orilented in
space. Sometimes 1t 1is of in-
terest to investigate cases
where the aforementioned rigid
bodies may collide during the motion. However, at all times the matter at
hand 1s the clarification of the conditions of exlstence and stability of
motions of the type (2.2), that is, of synchronous motions.

2. The dynamics of an automatic balance
for the eguililidbrating of rotating rotors.
One of the possible forms of the balance [13 tc 15] is shown schematically
in Fig.3¢. Onto a flexible rotating shaft 1 & disk 2 is attached, 1ts cenber
of gravity ¢ does not lle on the axis of the shaft 408. The disk contains a
cylindrical or toroidal cavity which is filled with oll and whose axis coin-
cides with the tangent to the axis of the shaft at the point of support 0, .
A few balls 3 are placed Inthe cavity. Under specific conditions they arrange
themselves in the rotating disk in such a way that they compensate the un-
balance of the disk and thereby eliminate oscillations of the shaft and the
transmission of dynamic loads to its bearings.

The equations of motion of the system have the form
Ro  +BoR (g5 —0) =2 sinQ, + ¥ cosq (s=1,.... 0
B
Mz + Bz + cz = M°ro? cos ot — mR 3 {cos @s)” (1.8)

=1
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k -
My + By + cy = — M°ro®sin ot + mR 3} (sin ¢,)" (1.5)

contin.
L

(M = km + M%)
(The above equations were Introduced in [15] 1n other nctation).

Here (see Fig. 30) & and y are the coordinates of the center of the
disk g, 1n a fixed system of axes x(0y , whose orlgin is at the point of
intersection of the plane of the disk with the axls of the bearings; ¢, du
the angle between the straight line joining the center of the disk and the
center of the s ball and the directlon of the x-axis, measured clockwise;
M, m and ¥ are the masses of the disk, the ball and the entire system. res-
pectively; r 18 the eccentriclty of the disk, # iz the distance from the
center of the balls to the axis of the shaft; «w 1s the angular velocity of
rotation of the shaft; B8, and 8 are the coefficlents of viscous resistanc.;
s 18 the stiffnessz of the chaft in
bending with respsct to a force ap-
plied at the peint ).

The problem reduces to the clari-
fication of the conditions of exist-
ence and stability of the solutions
of the system (1.5} of the form

@s = ot +Ps (1) (s=1,..., k)
z = z (i), y =y () (1.7)

S
LS
y_ 4 o
N D
N ’ z
Fig. 3 0 ~—__— ¥

Here §,, x and y are periodlc functions of the time ¢ with periocd
2n/w . In this case,of particular interest are those soluticnz of (1.7 in
which Z (0!) =~ y(wt)=0, that is,solutions corresponding to the self-equi-
libration of the system, when oscillations of the shaft are absent.

Along with the great similarities in the formulation of the present and
previous problems there are also differences, which are assoclated with the
fact that the lnitial equations (1.1) for the problem of self-synchronizaticn
were autonomous, whereas the system (1.6) is nonautonomous. In the first case
the frequency « was assumed to be unknown beforehand, while in the second
case it was taken as glven. We note, however, that this difference may be
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eliminated 1f one assumes that the angle of rotation of the shaft ¢ 1s not
glven and if cne attaches to the system (1.6) the equation of motion of the
motor rotating the shaft.

If in Equations (1.6) one uses Formulas (1.7) to pass from the variables
v, to new varlables ¥, and the nondimensional time 1 = wi, then this system
may be represented in a form which 1s analogous to the systems (1.3) for the
problem of the self-synchronization of vibrators

TR B R S (TS W

&
M° L4 * e
x"“{’}}%ﬁx:M"mST—Tn}R lecos(r—hp,)] —pz%}.x
k

» Me . m . 0 _E: ,

Y by == gprsint+ o R E{SIn(v+w3)J By 18
Here
ud):%ix”sin(f%m)%w"cos (r +9)1 up* = p .9

whereby the gquantity u can, as before, be considered as a small parameter,
This, clearly, corresponds to an assumptlon on the smallness of the deflection
of the center of the disk x and y 1in comparison with the length of 7 ,
and likewise on the smallness of the coefficient g/Mw which characterizes
the resistive force in the oscilllation of the disk.

Hence the problem reduces to the clarification of the conditions of ex-
istence and stability of periodic {with periocd 2n) solutions of egquations
(1.8), particular interest being focused on the solutions x = yx0.

3. Bending-torsional oscillations of a
rotating shaft with unbalanced dis ks
We consider a system consisting of a miltiply-supported shaft with an arbdbi-
trary number k of statically unbalanced disks (Fig. 4g). We shall assume
that in its motion the shaft may perform not only bending but torsional
oscillation; that 1s, we shall assume that the stiffness in torsion of the
various portions of the shaft is finite. The shaft supports may be either
rigid or flexible with nonidentical stiffnesses in various directions. Some
of the dlsks may represent rotors of the motor which drive the shaft in ro-
tation.

Fig. b4q

Let Oxyzr be a fixed system of rectangular coordinates, the :r-axis of
which is directed along the axis of the shaft bearings. Small oscillations
ot each disk are specified by cartesian coordinates x, and y, of the point
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of intersection of the planes of the disk with the axls of the shaft 00 ,and,
likewise, by two Buler angles o, and g, , chosen in accordance Fig. 4p .
The rotation of each disk 1s specified by the angle of its own rotation 7 -

If gyroscopic terms are neglected and the forces of gravity are not taken

into account, then the differential equations of motion of the system may be
represented in the form

. . ) (1.10)
L™ = myes (2" €05 @, + Y5~ Sin @,) — ¢y (95 — Po_t — Ko + %soa) +

+cs,s+1(q’n+1*q)s’—“s+1+"s)+Ls—-Rs s=1,..., 8

.4

myxs + 721 (CS;(ix)xi + cﬁgxa)aj) = M8 (@5 €08 Py — @y ? sin ;) + Qa(x)
k

msys + 21 (ngwyj + cs.g‘uﬁ)gi): = m,e, (@, sin @, + @, ? cos @) + Qs(m
j=

k
Asas““‘}_ 321 (ng'a)aj 4 Cs_-f‘m)xj) — Qs(a)

k .
AP+ 5‘§1 ("85 + co®yp) = QP

Here m,, ¢,, 4, and I, are, respective-
ly, the mass, the eccentricity, and the equa~
torial and polar moments of inertia of the g
disk; e¢,,.; 1s the stiffness under torslon
of a portlon of the shaft between the s and
and the s + 1 disk, whereby'cm_::ck PE 0;

o) (xB)
csy.(x), ci}') , cs(].“), ng;)’ csix » Cs;

4

are respectively the stiffnesses of the shaft Fi 4

under bending with account taken of the pli- €. %D

ability of the supports; =, 1s the value of

the angles ¢, , under whilch the elastic twlisting moments over the span of
the shaft, are equal to zero (these angles, determined with accuracy up to
the constaat rotatinn x,, characterize the directions of the eccentricity
vectors ¢, = 0,C, of the disks for the untwisted shaft); Q,™, QW gt
and Q" are forces and moments of internal and external resistance to"°
oscillations of the shaft which may depend on all of the generalized coordi-
nates and velocities of the system, the coordinates ¢, and the velocltles
¢," entering into the expressions for ¢ only in the form of differences
p,— @, and o}~ @, ; L, and R, are, respectively, the rotational moments
of the motors and the moments of forces reslsting to the rotation { 1t is
usually sufficient to assume that these moments are functlons of o, — ,;
o, — ¢," and ¢,°, and likewlse, are possibly periodic functlons e, wi%h
period of 2n }.

The problem consists of establishing conditions for existence of stabllity,
and likewise of calculating with some degree of accuracy the synchronous
motion of the system, that 1s motions of the form

¢y = 0¢ + Ps (mt)v Ty = Iy (&)i), Ys = Ys (mt)
as = as (o), Bs = B, (of) (1.11)
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Here ¥,, %, 0us o, 8nd B, are perlodlc functions of time with perilod
2n/w . In this case, as in the problem of the synchronization of vibrators,
the value of the synchronous freéquency w , generally speaking, 1s not known
beforehand and must be determined in the course of the solution of the prob-
lem. As previously, & transformation to the variables y, and a passage to
nondimensional time 1 = w¢ reduces the problem to the lnvestigation of
perioaic {with period 2m) solutions of a system of nonlinear equations whose
right-hand sides are perilodic functions of 1t with the same period.

It 1s also not difficult to see that In the present case a small para-
meter 1s completely naturally introduced.

4, BSelf-synchronlzatilion of pendulum
clocks suspended from a movable foun -~
dation (the problem of Huygens). As 1t has
already been mentloned, the phenomenon of synchronizatlon of dynamic systems
was apparently filrst dis-
covered experimentally by
Ch. Huygens just in the case
of the self-synchronlzation
and phasing of the movements
of two pendulum clocks sus-
pended from a single thin
beam. If we restrict the
model of the clock motion to
a single degree of freedom
and 1if we assume that the

clocks hang from an elasti-
Fig. 5 cally suspended rigid plat-

form having one degree of
freedom {Fig. 5), then the equation of motion of the system coincides exactly
with Equation (1.1} of the problem of self-synchronization of vibrators. In
the clock problem the specific expression for the driving momeuts L, and
the resistive moments R, will only be changed. Under the assumption stipu-
lated above, these moments are to be considered dependent on the angle of
rotation of the pendulums @, and the velocities g, . The differential equa-
tions of motlon of the clock-platform system can be written in the form

§s -+ Qlg, = “[i‘ [mgesz™ cos y + Lo (@, §s) — Bs (95, @s)]

x (1.12)
Mz" 4 kex' - cpx = }3 MgEeps COS X, (s=1,..., K
S}
where, 1in contrast to the problem of the vibrators, the angles of rotation
of the pendulums are reckoned from the vertical and are considered small.
By Q, = yfﬁggg;77; we denote the frequencles of small free osclllations
of the pendulums under the conditions that the points of support are immova-
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ble (the "partial frequencies” of oscillations).

The problem consists of the clarification of the conditions of existence
and stability of periodic oscillations of the pendulums with common fiequency
w , teking place in spite of a possible difference in the partlal frequencies
l, of the separate pendulums, in the moments of inertia 7, , and in the
moments 7, and R, . In other words, we are concerned with the investi-
gation of the conditions of existence and stability of periodic solutions
of Equations (1.12) with a period 7 = 2n/w which is unknown beforehand and
is subject to determination in the process of solving the problem. We are
also interested 1n computing (even though approximately) the actual peri-
odic solutions,

Proceeding from the observations of Huygens, we may expect that synchro-
nization of the pendulums will be possible only under conditions that the
partial frequencles (, differ slightly from one another. Taking intoc ac-
count this circumstance and considering also the possible orders of smallness

of the separate quantities, it is natural to introduce into the system {1.12)
a small parameter u , which puts 1t into the form

9"+ QA = p®.* (@, 95 27) (s=1,..., %
. (1.13)
Mz 4 oz = 2 me Q" cos x — phrr
§==1

where

1 » . .
}.l(ps* (q)s., Pes 37") - sz,@s + I_S [msesx cos } + Ls (‘Ps ’ CPS) - Rs ((ps ) (ps)i

k= why* Q2= Q31— %) (1.14)

X

and for 1 we may take elther one of the (], or some arbitrary average of
the Q, .

We note that for u = O the first x equations become independent and the
system {1.13) allows of a family of periodic solutlons with perled 2nfw,
depending on the 2k arbitrary constants. In this case, the characteristic
equation of the generating system has at least the %x-fold root p= exp(2nin)
and x-fold root p= exp(—2niQ). As above, as a consequence of the independence
of the first x equations for p= 0, simple elementary devisors correspond to
these roots.

5. Synchronization for the parallel
operation of alectrical machinery . We con-
sider the formulation of the problem of the parallel operation of a certaln
number k% of generators on a common load. The state of the s generator
will be characterized by & single "rotational"” coordinate, i.e. the angle of
rotation of the rotor wiih respect to the stator g, , and llkewise by a set
of "oscillatory” state coordinates z;® , ..., Z, ), which may be electrical
as well as mechanlical quantiltles.

First of all, let us assume that every generator operates on independent
loads R, , whose state is characterized by the state coordinates ulﬂh .. ey
u, (9 {Fig. 65). Then we shall have ¥k independent autonomous systems in

8
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which under specific condltions there will be motion of the form
P = O + Y (0st), ;0 = ;9 (agt), | u® = u,® (o) (1.15)
G=1...,rpp=1,..., v s=1,..., k)
where Y5, 25 and u,® are periodic functions of time ¢ with the period 2n/w, ,
and each of the w, 1is a constant which we may call the partial frequency of
the generator corresponding to a given load A, . Because of nonidentical
lcads, inaccuracy 1&1 manufacturing,

al £y 4 Fr and also because of imperfections in
H {
u‘yv)‘"vu{l:’ uﬁ(z,;“_,u{'z} U;’f-’--vuvf}' contrecls, the frequencles w, for the
wy w, wy various generators, generally speaking,
7 @ of .. ®) -{K) v
I‘f’nx;?-----”r',)l I'sz‘lf""‘rf;l' I%x”._qu will be different.
G G
b) & Rz ¥ We assume now that all of the gene-
Wy, ... My | rators are switched in parallel to

w operation on a single load R,the state
[g;’ x J’(r)l Bxilz) z,(_r)l.,_I%Iw _r,(_x)l of which 1s characterlzed by the state
2y yee, - A .

r O

G , G coordinates u,..., u, (Fig.6d).Then
the problem consists of finding con-
ditions under which, notwithstanding

Fig. 6 the possible differences in partial
frequencles w,, a rating with a com-
mon synchronous frequency w is established in’'the integrated system. In other
words, in the present case we are Interested in clarifying the coditicns for
the exlstence and stabllity of motlions of a comblned system in the form

95 = ot + P, (01), z;® = ;9 (wt), Uy, = u, (o) (1.16)
(}'=1,..., rap=1...,vs=1...,k

where {,, x¢» and u, are periodic functions of ¢ with the common period of
Qn/w, and where w 1s a constant whicn 1s not known exactly beforehand, In
other terms, the problem of synchronlzation arises here also¥*.

.

Here we do not give the differential equations of motion of the system
being considered. In the general case they are so compllicated that thelr
derivation represents a nontrivial problem. In various cases of practical
interest, these equatlons, written as a rule in terms of the functions Yy s
x/ and u,, are given, for example in [16 to 18],

In terms of the variables indicated, the problem of the parallel operation
of electrical synchronous machinery reduces, as in all of the problems examined
above, to the study of the conditions for the exlstence and stability of
periodlc solutions of a certiin system of differential equatlons whose right-
hand sldes are alsc pericedic functions of time with the same perlod.

* We note that the term "synchronization” is often used in electrical engi-
neering in a different sense than in the present paper.
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6. Synchronization of vacuum-tube
osclilllators . The problem of the synchronization of vacuum-tube
oscillators 1s of great significance in radio technology and in television.
As an example we formulate the problem of the self-synchronization of the
van der Pol type oscillators under the assumptlion that they are coupled to-
gether inductively. The differential equations of motion of the system will
have the form

k N
2+ Qez, =pla, (1 — 22 & + beiz;” | 6=1,.... 0 (117
=1

Here 0,> O, w> 0 and g¢,> O are constants. For b, = O Equations
(1.17) pass into % independent nonlinear equations, known under the name
of the equations of van der Pol. Such equations have a periodic solution of
period To= 2m [1 4+ & (u)] / Q;, where 6(0) = O ; therefore in the case of
absence of coupling between oscillators (b” = 0) each of them generates oscll-
lations in the steady state operaticnal conditlon whose frequencles are
ws (W) = Qs / 1 + 8 (W)], which,generally speaking, are different. These
frequencieé may be called the partial frequenciles of the oscillators.

As before, the baslc problem wlll be the establishment of conditions under
which all of the coupled osclllators operate with a common frequency o (un-
known beforehand), notwithstanding the possible differences in the partial
frequencies w,(u) . In other words, the matter again concerns the finding
of conditions of the exlstence and stabllity of periodic soclutlons of the
system (1.17).

If the frequencles 0, = w,(0) differ slightly from one ancther so that
one may set -Q2= Q2 (1 — py,), then equations (1.17) reduce to the form

zg 4 Qg = pO,(z,, 26 T s . o T) (s=1,...,k (1.18)
where

k
AN p_l:as (10— 2z, + 1, Q%+ ) bijj"—’ (1.19)
j=1 -

P“(Ds
The equations (1.18) are a quasilinear.autonomous system which is analo-
gous to the first xth equations (1.13) of the Huygens problem. As before,
the generating system for (1.18) has a periodic solutlon of pericd on/a
depending on the 2k arbitrary constants, whereas the characteristic equation
of this system has two x-fold roots O = eXp (j:ZHign with simple elementary

devisors.

2. The general formulation of the problem of synchronization. In the
general form, the problem of the synchronization of dynamlc system: may be

formulated in the following manner.

We consider a certain number % of dynamic objects asscutled in one single
system (Fig. 7). Let the motlon of the gth object be defined by a r,-dimen-
sional vector x® = [z;© ..., xrss)] (s=1,..., k), the componenus of
which x/* will be coordinates of the object in the state space of the system.
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The motion of the system as a whole will be specified by the aggregate of
the vectors x™ introduced above and by the y-<dimensional vector W = [u,,..

.s “v] which characterizes the connections between the objects. Hence, the
state space of the system has I =r; 4+ ...+ 7, - v dimensions.

Let the motion of the system under consideration be described by differen=-
tial Equations

X@ = X® (x9) + FO @, .., x¥, v (c=1,.... 0 (2.9)

where u = UxW,... x0, v

XO = (X9, ..., X, L FY=[F", ..., FLU=1[U,..., Ul

are, respectlively, r, and y-dimenslonal vector functlons, satisfylng extremely
general requirements under which the system (2.1) will be dynamical, and
certain special requirements which will be indicated below. The vector-
functions P, and U , characterizing the connections between the specific
oblects will be called the constraint functions.

From the block diagram given in

I u=gh.“.,uﬂ } Fig7 7, and likewlse from an examl-
| 1 ] nation of Equations (2.1}, it is seen
i ;Enhf”‘ £« ;m[ @ (1? x(_!@[z({" ,1(") that each of the objects may be con-
l nected to the remaining objects both
- ot directly and through a system of con-
i _“ ::: straints, the state of which 1s charac-

terized by the state coordinates Up -
Further, it 1s seen from the equations
Fig. 7 that the coordinates xf”which specify
the state of objects and the coordi-
nates u of the system of constraints enter, 1in essence, into Equatlons
(2.1) on a completely "equal footing"”. The specific character of each group
of variables in many problems of synchronizaticn will be clarified below.

We shall consider the basic problem of the theory cf synchronization to
be the establishment of the conditions for the exlstence and stabllity of
solutions of Equations {2.1) 1in the form

T =¢,® [¢Pot + ;@ (00)] G=1,...rgs=1...,k (2.2
u, = o, lgot + v, (o) p=1,..., v

where w . 1s a positive constant, f“(wt) and up(wt) are pericdic functions
of wt with the period 2r ; q;” and g, are numbers each of which may be
either zero or unity. In the first case we shall conditionally call the
corresponding coordinates x}” or wu oscillatory, 1n the second case we
shail call them rotational. By o/* and o, we shall denote numbers whicn

may arbitrarily be either +1 or =1
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To solutlons of the form {2.2) there correspond either oscillatory motions
or motions that are uniform on the average in which each coordinate has the
same frequency {linear or angular velocity) @ . In the seguel we shall call
such motions synchronous.

We shall now concretely specify the right-hand sides of Eguations (2.1).
We shall assume that the functions X;;{S), F,-m, Up depend on their arguments
in such a way that upon substitution for xf” and Uy in accordance with
Formulas (2.2), these functions will become periodic functions of the'non-
dimensional time" 1 = w¢ with period 2r

The last condition 1s not necessary for the existence of synchronous mo-
tion in system (2.1), however, 1t is fulfilled in all concrete problems of
synchronization known to us and it essentially simplifies thelr soclution.
Hence, in what follows, this condition will be assumed to be satisfied. We
note that for this condition to hold it is sufficlent that x;* and o, be
periodic functions of the rotational coordinates with period 2n , and like-
wise, that they be functions perhaps, of the differencesd;(9x;i8) — g, tmig, (m)
SjUj — Sgllp, 6,815 — Gglip, where z;(8), 2™, u; and u, are rotational co-
ordinates,

Using Formulas {(2.2) and passing in Equations (2.1) from the variables
X, u and ¢ , to the variables ¥y, v and 1 = wt, we obtain a system of
the form

y CH Y{S) (}'(S), '17) + (D{s) (y(l) e y(?s‘)’ v, T} (s=1,.... % (23)

V, == V (y(l) y o ey y(l\')’ ‘r, '{')

where in correspondence with the assumptions made on the character of the
vector ~functions X(s),F(s) and U, the functions Y(s), ®® and V will be
periodic with respect to the nondimensional variable r with period 2n

Thus the basic problem of synchronization reduces to establishing con-
ditions on the exlstence and stablility of periodilc solutions of the system
of equations (2.3) with period 2n

In addition to the groblem of synchronization that has been formulated
above, the following problems are also often of interest.

1. The actual calculation of the synchronous angle or linear veloclty
{frequency) ¢, and Hikewise the solutlons of (2.2} which correspond to the stable
synchronous motions. In many cases one may restrict himself to the determi-
nation cf average values over & period 2n of the functions ¥*(wz) and
v{wt), that 1s the quantigt;_ies
_L.
2n

v (1) dt (2.4)

St
i

al® = “2%;’ S y¢© () dr, a=
0
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and likewlse to the maximum deviations!gg“)(t) - afs)hnax and |7, (1) — a,|
from these average values.

max

2. The choice of a system of constraints under which the existence and
stability of synchronous motions of (2.2) of the given form 1s guaranteed.
This problem, which may be called the problem of synthesis, is in a certain

sense the inverse of the baslic problem.

Also, sometimes of interest is the extremely difficult problem of deter-~
mining & region of initial values (the "capture region") in the phase space
of the system such that for subsequent times the motlion will approach the
specified synchronous motion without restriction.

What was indlcated above wes related to the problem of simple synchroni-
zation. However the more complicated problem of multiple synchronization
also arises in a number of applications. The question then is not rotation
or oscillation with a common angular velocity (frequency), but with common
velocities (frequencies) of the type n,w, where n; 1s an integer, generally
speaking, different for the various components of the vectors x¥ and w .

One of the most important classes of problems of synchronization is formed
by problems of synchronization of self-osclllating objects., As a rule these
objects are of the same type and each 1s 1solated from the rest (the constraint
functions F and @® in Equations {2.1) and (2.3) are absent) and under
specific conditions may perform motions of the type (2.2) which are charac-
terized by a certain frequency (angular or linear velocity} w,. It is na-
tural to call the quantity w, the partial frequency (velocity) of the otject.
The problem of synchronization consists of finding the conditions under
which all the objects upon assembling into a single system may perform mo-
tion of the same type but with an identical frequency {velocity) w or like-
wise with frequencies (velocities) of the form n,w .

Depending on the character of the formulation of the problem of synchro-
nization of self-oscillating objects or systems containing such objects, it
is necessary to distinguish between the problem of internal {autonomous)
synchronization and the problem of externsl {nonautonomous) synchronization.

In the first, more general case, to which the above formulated problem
of synchrbnization is related, all of the objects to be synchronized are
considered as elements on an equal footing of a single autonomous dynamical
system. In this case, the frequency of synchronous motion is established
as a result of the interaction of all of the elements.of the system. The
right-hand sides of equations (2.1} in this situation do not contain the
time ¢ 1in explicit form, and the value of the synchronous frequency w is
not known beforehand and is subject to determination in the process of sol-
ving the problem (see Subsections 1 and 3 to 6, Section 1).
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In the second case it is assumed that one of the self-osecillating objects
that 1s to be synchronized 1s significantly stronger than the remaining ob-
Jects and therefore its motion is to be considered independent of the charac~
ter of the motlons of the remaining elements of the system. The singled-out
object acts on the other elements of the system and therefore the frequency
{or angular velocity) of the synchronous motion 1s assumed to be glven at
the outset and is unchanging.

In such approach to a problem, the initial system (2.1} becomes nonauto-
nomous and thereby 1ts order is lowered (see Subsection 2 in Section 1).

It 1s not hard to see that all of the concrete problems that were con-
sidered in Section 1 are particular cases of the general problem that has
been formulated here.

In conclusion we note that in a number of applications the study of the
synchronlzation of a2 system with distributed parameters is of interest. In
this case, a number of eguations (2.1) are partial differential equations.
Clearly, all that has been indicated above may be also extended to such a
system of equations,

3, Basioc peculisrities of the problems of synochronization, The differ-
ential equations of the problems of synchronization, as a rule, are essenti-
ally nonlinear. However it is often possible to introduce into them a small
parameter. This allows one to apply methods from the theory of periodic
solutions which was developed by A, Poincaré and A.M. Liapunov.

One can point out two important groups of problems of synchronization 1n
which the method of a small parameter can be effectively applied.

In the first group are problems of synchronization involving objects which
are "weakly" coupled. These are the very problems of interest in application.
On the one hand, synchronization is technically the most straightforward
and most economical by means of "weak" interconnections. On the other hand,
if it 1is necessary to apply 'strong" interconnections between some of the
objects then, as a rule, the system may, after the application of the int.r-
connections, be regarded as a single system for which the problem of synchro-
nization does not arise. Thus, for example, two mechanically unbalanced
vibrators,whose shfts are connected by means of drive gears wlth rigid inter-
mediate elements that are between the vibrators and the gears, form, practil-
cally speaking, a single two-shafted vibrator.

Most of the concrete problems of synchronization examined in Section 1
may be put into the category of synchronization with weak coupling, as well
as many other problems.

In the case of objects with weak coupling, the baslc equations (2.1) may
be represented in the form
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. ¢ k
<& X® (x(s)) + p.F (8} (x(l), ey % )’ u, IJ:) (s=1,. -
u=U*(x0,...,x%, u,p 3-4)
or in terms of the variables y(®, v and T = ot into the form
yl(s) p— Y(') (y(s), T) _+_ }1@0“) (y(l)’ e, y(k), v, T, p) (s=1,..., k} (3 2)

vV =V (y@ ..., ¥0, v, T, p)

_Here F°® U*, @ and V* are vector-functions of the same class as
F® U,®%and V 1in Equations (2.1) and (2.3), whereby F°®, Ux, @°®
and V¥ are likewise functions of a small parameter p Wwhich 1t is suf-
ficlent to consider an analytic for u in the interval |u] < u,, where
Mg > 0,

An extremely wide class of problems 1s formed by probleas of synchro-
nization of identical or almost ldentical objects which are weakly coupled
to one another. In this case, the functions X and Y in Equations
{3.1) and (3.2} do not depend on the index &

Equations (3.2) which have been introduced for the study of periodic so-
lutions and whose solution in the present case gives the solution of the
basic problem of synchronization, have the property that in the correspon=-
ding generating system each of the first jx equations are independent.

After the vectors .y,* have been determined from them, the vector v, may be
found from the last equation. This circumstance essentially simplifies the
solution of the generating system; however, it leads to a number of compli=-
cations 1n the study of the complete system. The fact 1s that the generating
system in synchronization problems allows not of & single solution but of a
whole family of perilodic solutions

yjf()s) = yic()s) (T, Ggy -+ o Op) (=1...,rgs=14..., 6 (3.3

which depend on a certain number p of arbitrary parameters g, . In this
case, p 1s equal to or greater than the number of objects % , which is
not hard to see. In the generating approximation the equations of motion
of the objects are independent, and 1f they have & periocdic solution Yo {7}
then, in accordance with the autonomous nature of each of Equations (3.1)
and in accordance with (2.2), they also allow of the periodic solutions

yg.;) (v + was) + q(? w0 s, where g, are arbitrary constants.

It is known that the presence of solutions of the type (3.3) in the gener-
ating system corresponds to a singular case wherein the Poincaré determinant
goes to zero together with 1ts minors up to order I — p + 1 , inclusively
[19] . In this case not only the study of the exlstence, but of the stabi-
lity of periodic solutions, becomes more complicated since, by virtue of the
theorem of Poincaré, the characteristic equation for the system correspon-
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ding to the generating system and generating solution always has a p-fold

root which is equal to unity, Therefore, the original japproximation to the
roots of the characteristic equation does not answer the question of stabi-
1ity and 1t is necessary to study higher order approximations.

The presence of multiple (or near by) roots in the characteristic equa-
tlon of the synchronization problem may be associated not only with autonomy
but with the presence in the system of a number of identical (or almost iden-
tical) objects. We note also that in systems with weak coupling, the gener-
ating equations of motion of all of the objects are independent. Hence, the
characteristic equation will disintegrate into not less than #x independent
equations and the elementary devisors corresponding to each root will be
simple only if each of the equations (3.2) separately has simple roots,

There alsc exlsts another category of synchronization problems in which
the method of small parameters may be effectively used. These are cases in
which the study of synchronizatlion may be restricted to condltions under
which the object performs motions that are close t¢ some known motions.

So, for example, a number of problems in the synchronization of vibrators,
self-balancing machines, bending-torsional oscilllations of shafts and the
synchronization of generators may often be sufficlently solved under the
assumption that in synchronous motion all of the rotating coordinates {(an-
gles of rotation of the rotors) change with time in a nelghborhood of an
equillbrium rotation with the synchronous angular veloclty w .

4, Bhort review of works on the theory of synchronization of dynamic
systems, On some unsolved problems.

1. Mathematilcal 1nvestigations . A systematic
study of the general case when the generating solutions depend on a number

of arbitrary parameters q, was begun in the monograph of Malkin [19].
ﬁs was indicated in Section 3, this case 1s of particular interest in the
theory of synchronization. Generalizing the results of Polncare [20], Mal-
kin established that the periodic solutlons of the baslc system of equations
which transform into the generating solution for u = 0O may correspond only
to those values of the parameters a, which satisfy a certain system of

equations
¢ P, (s ) =0 (s=1,p) 4.9

To each simple solution @M= &*, ..., @, = @," of this system there indeed
uniquely corresponds a periodic solution of the basic system of differentlal
equations which is analytic in pu and which for u = O goes into the gene-
rating solution.

Later, extensions were obtalned or concrete methods of constructing the
functions p, were indicated for various tfpes of' systems of differential
equations by Malkin [21 and 22], Shimanov [23 to 28], Merman [29], Codd nﬁ-
ton and Levinson [30], Bulgakov [31], Volk [32], Neimark [ 33], Volosov %
Neimark and Shil'nikov [35],Kolovskii [36], Kushul [37) and Rodinov [38)
Likewise, in the work of Merman [29], and Shimanov [23 and 26] and certaln
othc» authors particular cases were studied in which the solution of equa-
tions (4.1) is not simple. For systems with one or two degrees of freedom,
for p=2 or p =4, these cases were studled in detall by FProskurlakov
[39 and 40], and Plotnikova[41l and 42].

The problem studied by the author in {3] on the synchronizatlon of vibra-
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tors was an example of a concrete technological problem the solution of which
immediately required a study of a case wherein the generating solution de-
pended on p arbltrary parameters and the characteristic equation for the
generating system and the generating solution had a p-fold root equal to
unity (with simple elementary devisors). In this paper it was shown that

the study of the stabllity of periodic solutions for sufflclently small u
may be reduced to the study of the signs of the real parts of the roots of

an algebraic equation of the Pth degree (8,, 1s the Kroncker symbol).

-~
Ea]
~

=0 (s’ ":1)"‘11’) (
a=a*
that 1s to the usual problem of Hurwiltz.

In [43] a corresponding theorem on stabllity was proved for quasilinea-
nonautonomous systems. A proof of a number of analogous theorems for peri-
odic solutlons of nonautonomous nonlinear systems was given in the monograph
of Malkin [44], The case of quasilinear autonomous systems was examined in
our note [63], and a generalization to almost-periodic oscillations of quasi-
linear systems with delay was given by Shimanov [45]. Nohel [46] obtained
certain of the results of our work [43 and 63] by means of some other argu~
ments and also obtained a number of new theorems.

In [4#7] 1t was noted that if there exists a function D (o1, ..., apL such
that 8D/ du; = —Pj{@, ..., ay), then this function plays the same role in the
problem of perlodic solutions that the potential energy plays in the problem
of equilibrium positions, Stationary points of the function p may correspond
to periodic solutions of the investigated type, whereas minimum points, ob-
tained from an analysis of second order terms in the expansion of D, may cor-
respond to stable periodic motions. It was established in a number of cases
that the function ) coincides in an average over a period with the value of
kinetic potential of the system. This circumstance was noted for the first
time in a particular case in a paper by Lavrov and the author [48].

In the paper by Bakhmutskii (49] it was shown that by modifying some of
the arguments, the method of Polncaré may be successfully applied to the
study of the processes leading to the establishment of periodic solutlons.
Usually this 1s done by means of asymptotic methods [50]. In this connection,
exactly the case of the presence of exclted solutions of the type (3.3) was
studied in [49] and it was established that in the initial approximation the
parameters a, may, generally speaking, be assumed to be slowly-varying
functions of %1me which are determined from the system of the equations

do
7o =3 Peldn ) (s=1,...p (&.3)

2, Study of 4didndividual classes of dyna-~
mical systems by means of the theory o f
synchronizatilon. The synchronlzation of weakly-coupled self-
oscillating obJjects with almost uniform rotating motlon was examined in [47]
and in more detail in the author's dissertation, submitted in 1962 to the
M.I. Kalinin Polytechnic Institute in Leningrad. It was assumed that the
motion of the system 1s described by Equations

Isq)s" + kscps. - kscsm = P(Ds s=1,..., %k
4.4)
d 8L oL {
T ow ", = & e r=1,...,v
where
d 4L aL

uP, = I o" 4+ kg — ko0 _cz’?ﬁ:_*_ r‘)s—{—— Q.

and 1 =T — 1 1s the Lagrangian, ¢, is a rotational generalized coordinate,
x, is an oscillatory generallzed coordinate, Q, and Q°+ pQ M= Q, are
generalized forces, J,, % and w are positive constants, and g, =% 1

It was also assumed that the generating system corresponding to Equations
(4.4) , had solutions of the type
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9, = O {0t + a,) (s=1,...,k

.., (4.5)

I

2, = z,° (0, @y, . . ., o) (r

where x,° are periodlc functions of time ¢ with period 2n/y and a, are
constants. )

Thils class of problem includes problems of synchronization of mechanical
vibrators, automatic balancing, bending-torsional oscillations of shafts
with disks, and likewlse many problems of synchronization of electrical ma-
chinery (see Section 1, Subsections 1 to 3 and 5).

Under sufflclently general assumptions on the form of the functions [
and ¢ 1t was shown that the functions p,, on which, in accordance with the
above, depends the solution of the problem of existence and stability of
synchronous motion, may be represénted in the form

1 TBA e 8z,° 0% e
P(a,...,a)z_{._—i—i S o1 Zr 4 s S :
s k k, \9a, ' 2n El J (e’ da, + 2n [Q,]d
s=1,...,k (4.6)
where on /w
A=A(a1,...,ak)z-2%- S [L] dt
0

and the square brackets indicate that the quantities included in them are
to be for the generating solution.

If, as is often the case, ,°= 0 and
¥ v

1 .
L=IL+ Ly Ly= — 2 2 (/2] — byz,z)
) . re=3 JT1 . (4.7)
1 . .
L= o N d@ee, + 2 hal+ X F
s=1 j=1 r==] 8=1

where g,,, b,, and d,; are constants, s  are functions of ©, and o, ,
aﬂd 7, are perlodic furctions of ¢, with period 2n , then one may appiy
[473

2n /w

A=—Ay= E"’; S (L] dt (4.8)

0

Finally, if the last two terms in Equations (4.6} can be represented as
the derivativ:s with respect to ¢, of some function 4 , and if all of the
%, are identical, then there exists a functlon P which was discussed in
the previous subsection.

In the above mentioned dissertation, the author also studlied the problem
of synchronization of weakly coupled van der Pol oscillators. In the par-
ticular case of two oscillators this problem was studied earlier by Minorskl
by other methods [51].

The problem of internal synchronization of almost identical autonomous
objects under linear weak coupling was examined 'n a paper by Nagaev [52].

3. Papers on t he theory o f synchronil~
zatlion o f specilific machilnes . As far as concrete
problems of synchronization are concerned, those consldered in greatest de-
tail are problems of the simultaneous parallel operation of a number of
synchronous electrical machines {see footnote on page 249). Among the first
investigations in this field one should mentlion the work of Ollendorf and
Peters [ 53], Krylov and Bogoliubov [16], Zhdanov and Lebedev [17], and Gorev
[18]. A detailed bibliography and a description of the present state of
this problem may be found in [54 to 56].
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Because of 1ts extreme complexity, many important aspects of the problem
remain unstudled until the present day, notwithstanding the presence of
numerous investigations in which a number of substantial results have been
obtained. In partlcular, almost unexamined is the nonsymmetrical range of
operation of machines in the general case in which transient phenomena are
described by equations with perlodic coefficients.

The self-synchronization of two coupled relaxation oscillators (multi-
vibrators) was studied by Bremzen and Fainberg [57]. They discovered a
range of multiple synchronization and showed the possibility of oscillations
in the coupled system in a case in which neither of the oscillators was ex-
cited.

Assoclated with the problem of synchronization of vacuum-tube oscillators
is the related problem of the self-oscillations of coupled circuits, one of
which is self-exclited and the other of which is nonexcited. This problem
was already posed by van der Pol. The first to examine it in a sufficiently
rigorous formulation for the case of strong coupling between the circuilts
were Andronov and Vitt [58], and Skibarko and Strelkov [59].

A study of corresponding case for weak coupling was carried out by Belliu-
stin [60]. & mechanlcal analogue of the system Indiceted. above, but with
impulse excltation, was studied in a paper by Butenin [61] which was devoted
to the solution of a problem by Kelvin from the theory of clocks. A system
of a number of strongly coupled RLC circults, one of which 1s excited, was
examined by Gushchin [62] in connection with the theory of a dynamic flip-
flor.

The Huygens problem of the self-synchronization of pendulum clocks was
studled by Minorskl in the partlcular case of two clocks by means of the so-
called stroboscopic method [51]. The corresponding problem but for an arbi-
trary number of clocks and in a more rigorous formulation (see Section 1,
Subsection 4), was studled by us in ‘he dissertation menticned above by means
of similarity theorems [63].

Another group of papers consists of investigations of the theory of
synchronizatlion of mechanical vibrators. Paper [3] explained the phenomenon
of self-synchronization of vibrators and studied the simplest case when the
operating element of the machine has one degree of freedom in-all (see Sec-
tion 1, Subsection 1). The more complicated problem of the self-synchro-
nizatlion of vibrators flxed to machines wnhich contain a vibrating element and
which may perform arbitrary planar motion was studied by the author in [4 and
5]. The foundations' of the theory of forced electrical synchronization, and
also synchronization by means of the introductlon of elastic elements between
the rotors of the vibrators, was studled in {11 and 64}. Investigations [48
and 65] were devoted to an integral test for stability of motion in problems
of self-synchronization of vibrators. A further generalization of this test
wes given in [47]. In the paper of Shekhter [66] the problem of self-synchro=~
nlzation of vibrators in machines with a two degree of freedom vibrating
element was studied in connectlon with the installation of vibrationally
sunk shells. Applications of the theory of synchronization of vibrators to
the dynamics of crushing and grinding machines, transport apparatus, and to
certain other vibrating machinery was examined in [5, 7, 67 and 68], and
likewise in the indicated dissertation of the author.

In the paper by Lavrov [70], the problem of the synchronization of vibra-
tors fixed to a free rigld body was studied. In this connection, a case was
examined in which among the vibrators there were so-called rocking vibrators.

In the monograph [71] Ragul'skis studied a number of s stems with self-
synchronized vibrators, among *them the simplest case of multiple self-synchro-
nized vibrators and self-synchronization in the presence of shock. A com~
plicated system with shocks iIn which oscillations are excited by two self-
synchronized vibrators was studled in connection with the theory of vibra-
ting jaw crushers by Nagaev {72].

Problems of automatic balancing and of bending-torsional oscilllations of
a rotating shaft with unbalanced disks which, in accordance with the pre-
sentation in Section 1, may be considered-as problems of synchronization
were studied by the author in the above-mentioned dissertation. In another
formulation and by means of other methods the first of these problems was
studied earlier by Detinko [15].
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A degenerate class of problems in the theory of synchronization are so-
called capture problems in which essentially externally excited synchro-
nization of & single unique self-oscillating object is involved. Work on
the theory of capture due to van der Pol [73], -Appleton [74],and Andronov
and Vitt [58] and their numerous successors played an important role in the
development of the general theory of nonlinear oscillations.

In the category of capture phenomenon one may place the peculiar effect
of excitation and sustenance of rotation of an unbalanced rotor by means of
osclllation of its axis. This effect was studied by Bogoliubov [75], after-
wards by the author [6] and later by Barkan and Shekhter [76], Gortinskii
{77]), Caughey [78], and Ragul'skis [71]. The connection of this effect with
the phenomenon of self-synchronization was established by us in [4],

Among problems in the theory of synchronlzation which have not been com-
pletely resolved up to the present time, we mention problems of synchro-
nization in systems with discontinuous characteristics (in particular, the
problem of synchronization of vibrators in systems with impulses), problems
of multiple synchronization, the problem of synchronization for system with
distributed parameters, question of sunchronization (self-organization) of
biological and other objects, generally speaking, of nondynamical character,
problems of finding "regions of attraction" of synchronous motions in the
phase space of the system, and questions of the validity of the transition
from the study of problems of autonomous (lnternal) synchronizatlon to prob-
lems of nonautonomous {external) synchronization (see Section 2).

In conclusion we mention the following. In .the overwhelming majority of
problems studied on internal synchronization of weakly-coupled self-oscil-
lating obJects, the corresponding system of differentlal equations, as a
rule, allowed of at least one stable periodic solution (that 1is, synchro-
nization took place), only if there were sufficlently small differences be-
tween the partlal frequencies or the angular velocitlies. This confirms the
fact that the tendency toward synchronizatlion 1s a general regularity of
behavior of interconnected material objects.

In addition, synchronization sometimes takes place, notwithstanding the
weakness of the connections, even in the face of the existence of differences
in partial frequencies and in other parameters of the separate objects [4
and 5].
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